Stacey Huang ’16


Electrical Engineering

Project Title

Environmental Trace Gas Monitoring

Presentation Link

View Stacey's Presentation

There is a continuing need for sensitive and durable gas sensors for use in fields such as environmental monitoring and regulation of emissions. Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) is a flexible technique that takes advantage of a quartz tuning fork to sense pressure changes induced by modulated laser light in a gas sample. This technique offers many advantages over traditional spectroscopy techniques and is an attractive choice for countless applications. This summer, I worked at Clausthal University of Technology to examine and further develop existing QEPAS technologies being built up for various industry applications in gas sensing. I was able to work with both optical and electrical components, running calibration tests on a laser used for methane sensing, testing optimal LEDs for an ozone detection system, and finally constructing as well as optimizing existing circuitry to be integrated in a system for measuring nitric oxide. By working alongside a myriad of researchers, I was able to begin developing an effective approach toward problem-solving and working efficiently. I was able to gain both valuable first-hand as well as theoretical knowledge, and I look forward to continuing down the road in the field of electronics and laser spectroscopy.

Internship Year


Project Category

Climate and Energy


Clausthal University of Technology, Germany


Michael Köhring, Technical University of Clausthal