Stacey Huang, 2016, Electrical Engineering

There is a continuing need for sensitive and durable gas sensors for use in fields such as environmental monitoring and regulation of emissions. Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) is a flexible technique that takes advantage of a quartz tuning fork to sense pressure changes induced by modulated laser light in a gas sample. This technique offers many advantages over traditional spectroscopy techniques and is an attractive choice for countless applications. This summer, I worked at Clausthal University of Technology to examine and further develop existing QEPAS technologies being built up for various industry applications in gas sensing. I was able to work with both optical and electrical components, running calibration tests on a laser used for methane sensing, testing optimal LEDs for an ozone detection system, and finally constructing as well as optimizing existing circuitry to be integrated in a system for measuring nitric oxide. By working alongside a myriad of researchers, I was able to begin developing an effective approach toward problem-solving and working efficiently. I was able to gain both valuable first-hand as well as theoretical knowledge, and I look forward to continuing down the road in the field of electronics and laser spectroscopy.