Olamide Oladosu ’15


Mechanical and Aerospace Engineering

Project Title

Hematite (FE203)-Based Photoelectrocatalysts for Production of Renewable Hydrogen

Presentation Link

View Olamide's Presentation

I spent my summer immersed in the world of photocatalysis, a field that seeks to harness the power of the sun to efficiently run the reactions that will power our world in the future. I began by doing background research into the role of hematite and other semiconducting materials in catalyzing the splitting of water into its constituent parts. This reaction looks particularly promising because the hydrogen created can be stored and later burned cleanly in oxygen, creating energy and water as the only products. Current research focuses on balancing dopant concentrations and surface morphology in the catalysts in order to find a happy medium that maximizes the turnover of either photocurrent density or gas product for given wavelengths of light. Through the work of assembling and tuning a quadrupole mass spectrometer, I gained experience in the process of analyzing a photocatalyst candidate using temperature programmed desorption (TPD). This internship gave me an in-depth look into the proper design and execution of experimental systems and has really inspired me to pursue research into renewable energy sources as a career path.

Internship Year


Project Category

Climate and Energy


Princeton University, Princeton, NJ


Bruce Koel, Professor of Chemical and Biological Engineering